4.8 Article

Enhanced reduction of Cr(VI) by direct electric current in a contaminated clay

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 38, Issue 4, Pages 1236-1241

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es034578v

Keywords

-

Ask authors/readers for more resources

The probable relation between diffuse double-layer processes and redox reactions that enhance degradation or conversion of contaminants under an applied electric field were examined in a clay medium. Kaolinite clay, precontaminated with hexavalent chromium, was the test soil medium. Analyte, containing ferrous iron, was transported through the kaolinite clay using direct electric current. The Cr(VI) reduction to Cr(III) was followed by measuring the soil redox potential and pH at discrete locations in the clay bed. The post-test distribution of Cr showed significantly more Cr(III) than Cr(VI) at low to slightly acidic pH distribution (2 < pH < 6) in clay. The stoichiometric analyses of measured chromium and iron species concentrations versus the measured redox potentials were compared to Nernst equation predictions of an equivalent aqueous system. An average of +0.37 V shift was measured from the linear Nernstian prediction of cell potential. The applied electric field appeared to provide additional cathodic current to drive forth the redox reactions. The redox potential shift was explained by possible overpotential development at the clay-water interfaces due to double-layer polarization under the applied field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available