4.7 Article

Density functional study on the circular dichroism of photoelectron angular distribution from chiral derivatives of oxirane

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 120, Issue 7, Pages 3284-3296

Publisher

AIP Publishing
DOI: 10.1063/1.1640617

Keywords

-

Ask authors/readers for more resources

The linear combination of atomic orbitals B-spline density functional method has been successfully applied to a series of four chiral derivatives of oxirane, to calculate the photoionization dynamical parameters, the circular dichroism in the angular distribution effect, and to identify trends along the series. The computational algorithm has proven numerically stable and computationally competitive. The photoionization cross section, asymmetry, and dichroic parameter profiles relative to valence orbitals have been systematically studied for the states which retain their nature along the series: the identified trends have been ascribed to the different electronic properties of the substituents. A rather unexpected sensitivity of the dichroic parameter to changes in the electronic structure has been found in many instances, making this dynamical property suitable to investigate the electronic structure of chiral compounds. The magnitude of the circular dichroism in the angular distribution effect does not seem to be associated with the initial state chirality, but rather to be governed by the ability of the delocalized photoelectron wave function to probe the asymmetry of the molecular effective potential. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available