4.5 Article

p38 MAP kinase signalling is required for hypertrophic chondrocyte differentiation

Journal

BIOCHEMICAL JOURNAL
Volume 378, Issue -, Pages 53-62

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20030874

Keywords

chondrocyte; hypertrophic differentiation; Mitogen-activated protein kinase (MAP kinase); myocyte enhancer factor 2 (MEF2); p38

Ask authors/readers for more resources

Longitudinal growth of endochondral bones is accomplished through the co-ordinated proliferation and hypertrophic differentiation of growth plate chondrocytes. The molecular mechanisms and sianalling cascades controlling these processes are not well understood. To analyse the expression and roles of p38 mitogen-activated protein kinases in this process, we have established a micromass system for the reproducible hypertrophic differentiation of mouse mesenchymal limb bud cells. Our results show that all four mammalian p38 kinase genes are expressed during the chondrogenic programme. as well as their upstream regulators MKK3 (mitogen-activated protein kinase kinase 3) and MKK6. Treatment of micromass cultures with pharmacological inhibitors of p38 results in a marked delay in hypertrophic differentiation in micromass cultures. indicating a requirement for p38 signalling in chondrocyte differentiation. Inhibition of p38 kinase activity leads to reduced and delayed induction of alkaline phosphatase activity and matrix mineralization. In addition, p38 inhibition causes reduced expression of hypertrophic marker genes such as collagen X, matrix metalloproteinase 13 and bone sialoprotein. The function of p38 in hypertrophic differentiation appears to be mediated, at least in part, by the transcription factor myocyte enhancer factor 2C. In summary, we have demonstrated a novel requirement for p38 signalling in hypertrophic differentiation of chondrocytes and identified myocyte enhancer factor 2C as an important regulator of chondrocyte gene expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available