4.4 Article

A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 226, Issue 4, Pages 439-453

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2003.10.001

Keywords

3D vertex dynamics; interface energy; polyhedral cell model; vertex reconnection; viscoelastic cell aggregate

Ask authors/readers for more resources

We developed a three-dimensional (3D) cell model of a multicellular aggregate consisting of several polyhedral cells to investigate the deformation and rearrangement of cells under the influence of external forces. The polyhedral cells fill the space in the aggregate without gaps or overlaps, consist of contracting interfaces and maintain their volumes. The interfaces and volumes were expressed by 3D vertex coordinates. Vertex movements obey equations of motion that rearrange the cells to minimize total free energy, and undereo an elementary process that exchanges vertex pair connections when vertices approach each other. The total free energy includes the interface energy of cells and the compression or expansion energy of cells. Computer simulations provided the following results: An aggregate of cells becomes spherical to minimize individual cell surface areas; Polygonal interfaces of cells remain flat; Cells within the 3D cell aggregate can move and rearrange despite the absence of free space. We examined cell rearrangement to elucidate the viscoelastic properties of the aggregate, e.g. when an external force flattens a cell aggregate (e.g. under centrifugation) its component cells quickly flatten. Under a continuous external force, the cells slowly rearrange to recover their original shape although the cell aggregate remains flat. The deformation and rearrangement of individual cells is a two-step process with a time lag. Our results showed that morphological and viscoelastic properties of the cell aggregate with long relaxation time are based on component cells where minimization of interfacial energy of cells provides a motive force for cell movement. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available