4.8 Article

Stabilizing selection on genomic divergence in a wild fish population

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0307522100

Keywords

inbreeding; outbreeding; microsatellite; fitness; paternity

Ask authors/readers for more resources

Conservation programs use breeding protocols to increase genomic divergence (by mating genetically dissimilar individuals) in can attempt to circumvent population declines resulting from inbreeding depression. However, disruption of either beneficial gene complexes or local genetic adaptations can lead to outbreeding depression, and thus, there should be a reduction in fitness of individuals at either end of the genomic divergence continuum. Although such simultaneous inbreeding and outbreeding depression has been observed in plant populations, it rarely has been demonstrated in animal populations. Here, I use both genetic and phenotypic measures to show that there is stabilizing selection on genomic divergence in a wild population of bluegill sunfish (Lepomis macrochirus). I also show that breeding individuals that exercise mate choice produce offspring that are closer to the optimal level of genomic divergence than random mating alone would predict.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available