4.8 Article

Solute diffusion in metals: Larger atoms can move faster

Journal

PHYSICAL REVIEW LETTERS
Volume 92, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.92.085901

Keywords

-

Ask authors/readers for more resources

First-principles calculations for the diffusion of transition metal solutes in nickel challenge the commonly accepted description of solute diffusion rates in metals. The traditional view is that larger atoms move slower than smaller atoms. Our calculation shows the opposite: larger atoms, in fact, can move much faster than smaller atoms. Conventional mechanisms involving the effect of misfit strain or the solute-vacancy binding interactions cannot explain this counterintuitive diffusion trend. Instead, the origin of this behavior stems from the bonding characteristics of the d electrons of solute atoms, suggesting that a similar diffusion trend also occurs in other types of host lattices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available