4.6 Article

The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 9, Pages 7378-7383

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M312403200

Keywords

-

Ask authors/readers for more resources

The molecular chaperone Hsp104 from Saccharomyces cerevisiae dissolves protein aggregates in the cell and is thus of crucial importance for the thermotolerance of yeast. In addition to this disaggregase activity, Hsp104 has a key function in yeast prion propagation, as Hsp104 was found to be essential for the maintenance of the associated phenotypes. In vivo data suggest that Hsp104 function is affected by guanidinium chloride. Adding small amounts of this compound to yeast medium causes curing of the prions: cells lose their prion-related phenotype. Guanidinium chloride was also found to impair heat shock resistance. Here, we present a detailed in vitro analysis showing that guanidinium chloride is an uncompetitive inhibitor of Hsp104. Micromolar concentrations of this agent reduce the ATPase activity of Hsp104 to similar to35% of its normal activity. This inhibition is not related to the denaturing properties of this compound, because Hsp104 was not affected by urea. Guanidinium ions selectively bind to the nucleotide-bound, hexameric state of the molecular chaperone. Thus, they increase the affinity of Hsp104 for adenine nucleotides and promote the nucleotide-dependent oligomerization of the chaperone. Our findings strongly suggest that guanidinium chloride causes curing of yeast prions by perturbing the ATPase of Hsp104, which is essential for both prion propagation and thermotolerance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available