4.6 Article

The membrane domains occupied by glycosylphosphatidylinositol-anchored prion protein and Thy-1 differ in lipid composition

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 9, Pages 7530-7536

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M310207200

Keywords

-

Ask authors/readers for more resources

Glycosylphosphatidylinositol-anchored prion protein and Thy-1, found in adjacent microdomains or rafts on the neuronal surface, traffic very differently and show distinctive differences in their resistance to detergent solubilization. Monovalent immunogold labeling showed that the two proteins were largely clustered in separate domains on the neuronal surface: 86% of prion protein was clustered in domains containing no Thy-1, although 40% of Thy-1 had a few molecules of prion protein associated with it. Only 1% of all clusters contained appreciable levels of both proteins (>3 immunogold label for both). In keeping with this distribution, immunoaffinity isolation of detergent-resistant membranes (DRMs) using the non-ionic detergent Brij 96 yielded prion protein DRMs with little Thy-1, whereas Thy-1 DRMs contained similar to20% of prion protein. The lipid content of prion protein and Thy-1 DRMs was measured by quantitative nano-electrospray ionization tandem mass spectrometry. In four independent preparations, the lipid content was highly reproducible, with Thy-1 and prion protein DRMs differing markedly from each other and from the total DRM pool from which they were immunoprecipitated. Prion protein DRMs contained significantly more unsaturated, longer chain lipids than Thy-1 DRMs and had 5-fold higher levels of hexosylceramide. The different lipid compositions are in keeping with the different trafficking dynamics and solubility of the two proteins and show that, under the conditions used, DRMs can isolate individual membrane microenvironments. These results further identify unsaturation and glycosylation of lipids as major sources of diversity of raft structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available