4.4 Review

Molecular mechanisms underlying specificity of excitotoxic signaling in neurons

Journal

CURRENT MOLECULAR MEDICINE
Volume 4, Issue 2, Pages 137-147

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1566524043479202

Keywords

excitotoxicity; glutamate receptors; postsynaptic density; nitric oxide; apoptosis

Funding

  1. NINDS NIH HHS [NS39060] Funding Source: Medline

Ask authors/readers for more resources

The central role of glutamate receptors in mediating excitotoxic neuronal death in stroke, epilepsy and trauma has been well established. Glutamate is the major excitatory amino acid transmitter within the CNS and it's signaling is mediated by a number of postsynaptic ionotropic and metabotropic receptors. Although calcium ions are considered key regulators of excitotoxicity, new evidence suggests that specific second messenger pathways rather than total Ca2+ load, are responsible for mediating neuronal degeneration. Glutamate receptors are found localized at the synapse within electron dense structures known as the postsynaptic density (PSD). Localization at the PSD is mediated by binding of glutamate receptors to submembrane proteins such as actin and PDZ containing proteins. PDZ domains are conserved motifs that mediate protein-protein interactions and self-association. In addition to glutamate receptors PDZ-containing proteins bind a multitude of intracellular signal molecules including nitric oxide synthase. In this way PDZ proteins provide a mechanism for clustering glutamate receptors at the synapse together with their corresponding signal transduction proteins. PSD organization may thus facilitate the individual neurotoxic signal mechanisms downstream of receptors during glutamate overactivity. Evidence exists showing that inhibiting signals downstream of glutamate receptors, such as nitric oxide and PARP-1 can reduce excitotoxic insult. Furthermore we have shown that uncoupling the interaction between specific glutamate receptors from their PDZ proteins protects neurons against glutamate-mediated excitotoxicity. These findings have significant implications for the treatment of neurodegenerative diseases using therapeutics that specifically target intracellular protein-protein interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available