4.2 Review

α-linolenic acid metabolism in men and women:: nutritional and biological implications

Journal

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00075197-200403000-00006

Keywords

alpha-linolenic acid; docosahexaenoic acid; gender; beta-oxidation

Ask authors/readers for more resources

Purpose of review This review critically evaluates current knowledge of alpha-linolenic acid metabolism in adult humans based on the findings of studies using stable isotope tracers and on increased dietary alpha-linolenic acid intake. The relative roles of alpha-linolenic acid and of longer-chain polyunsaturated fatty acids in cell structure and function are discussed together with an overview of the major metabolic fates of alpha-linolenic acid. The extent of partitioning towards beta-oxidation and carbon recycling in humans is described. The use and limitations of stable isotope tracers to estimate alpha-linolenic acid desaturation and elongation are discussed. A consensus view of the extent of alpha-linolenic acid conversion to longer-chain fatty acids in humans is presented. The extent to which increasing dietary alpha-linolenic acid intake alters the concentrations of longer-chain n-3 fatty acids is described. The biological and nutritional implications of these findings are discussed. Recent findings Conversion of alpha-linolenic acid to eicosapentaenoic acid is limited in men and further transformation to docosahexaenoic acid is very low. A lower proportion of alpha-linolenic acid is used as a substrate for beta-oxidation in women compared with men, while the fractional conversion to longer-chain fatty acids is greater, possibly due to the regulatory effects of oestrogen. Summary Overall, alpha-linolenic acid appears to be a limited source of longer-chain n-3 fatty acids in man and so adequate intakes of preformed n-3 polyunsaturated fatty acids, in particular docosahexaenoic acid, may be important for maintaining optimal tissue function. Capacity to upregulate a-linolenic acid transformation in women may be important for meeting the demands of the fetus and neonate for docosahexaenoic acid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available