4.4 Article

Changes in characteristics of rat skeletal muscle after experimental allergic encephalomyelitis

Journal

MUSCLE & NERVE
Volume 29, Issue 3, Pages 369-375

Publisher

WILEY
DOI: 10.1002/mus.10554

Keywords

experimental allergic encephalomyelitis; fatigue; IMS; muscle atrophy; muscle weakness

Ask authors/readers for more resources

Experimental allergic encephalomyelitis (EAE) serves as an animal model for certain neuroinflammatory diseases of the central nervous system, in particular multiple sclerosis (MS). EAE is accompanied by transient weakness or paralysis of hind limbs. We have investigated the effect of partial and transient conduction failure in the central nervous system on skeletal muscle function. At similar to2.5 days after development of maximal clinical signs, body and medial gastrocnemius muscle mass were lower (by similar to21 and 33%, respectively; P < 0.05) in EAE rats compared with controls. Fiber cross-sectional area was lower by 40-50% in all fiber types. Maximal force and power were substantially lower (by 58% and 73%) in EAE rats, as was the force normalized for muscle mass (35%). However, no such weakness was found when lower stimulation frequencies were used. Generation of similar submaximal forces was attributable to a slower relaxation in EAE muscles. This advantage for the EAE muscles was lost during repeated exercise. While fatigability was similar, the difference in relaxation rate between EAE and control disappeared in fatigue. Our data suggest that, as a result of central neuroinflammatory diseases, maximal performance of skeletal muscle is impaired but submaximal performance is relatively well maintained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available