4.4 Article

Time integration in discontinuous deformation analysis

Journal

JOURNAL OF ENGINEERING MECHANICS
Volume 130, Issue 3, Pages 249-258

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9399(2004)130:3(249)

Keywords

discrete elements; deformation analysis; computation; rock masses

Ask authors/readers for more resources

Discontinuous deformation analysis (DDA) is a discrete element method that was developed for computing large deformation in fractured rock masses. In this paper we present details of the DDA time integration scheme, where the acceleration is taken constant over the time step, equal to the acceleration at the end of the time step (right Riemann). The integration scheme has several advantages: (1) Self-starting, (2) accelerations never need to be computed which reduces implementation complexity, (3) unconditionally stable, and (4) dissipative, contains algorithmic damping which may be important considering the penalty formulation of DDA. However, the light Riemann scheme is implicit, requiring expensive factorization or iteration to solve the resulting system of equations, and is accompanied by a bifurcation in the spectrum when the time step is large with respect to the period. This bifurcation has important ramifications for controlling spurious resonance in DDA simulations due to linear scaling in system stiffness compared to cubic scaling of the system mass as the characteristic length of the domain increases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available