4.5 Article

The effect of bidirectional flow on tidal channel planforms

Journal

EARTH SURFACE PROCESSES AND LANDFORMS
Volume 29, Issue 3, Pages 295-309

Publisher

WILEY
DOI: 10.1002/esp.1016

Keywords

tide; tidal channel; salt marsh; meanders; bank erosion

Ask authors/readers for more resources

Salt marsh tidal channels are highly sinuous. For this project, field surveys and aerial photographs were used to characterize the planform of tidal channels at China Camp Marsh in the San Francisco Bay, California. To model the planform evolution, we assume that the topographic curvature of the channel centreline is a key element driving meander migration. Extraction of curvature data from a planimetric survey, however, presents certain problems because simple calculations based on equally distanced points on the channel axis produce numerical noise that pollutes the final curvature data. We found that a spline interpolation and a polynomial fit to the survey data provided us with a robust means of calculating channel curvature. The curvature calculations, combined with data from numerous cross-sections along the tidal channel, were used to parameterize a computer model. With this model, based on recent theoretical work, the relationship between planform shape and meander migration as well as the consequences of bidirectional flow on planform evolution have been investigated. Bank failure in vegetated salt marsh channels is characterized by slump blocks that persist in the channel for several years. It is therefore possible to identify reaches of active bank erosion and test model predictions. Our results suggest that the geometry and evolution of meanders at China Camp Marsh, California, reflect the ebb-dominated regime. Copyright (C) 2004 John Wiley Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available