4.5 Article

Chromatin loops are selectively anchored using scaffold/matrix-attachment regions

Journal

JOURNAL OF CELL SCIENCE
Volume 117, Issue 7, Pages 999-1008

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.00976

Keywords

chromatin loop; loop anchor; S/MAR; FISH; gene expression; chromosome structure

Categories

Funding

  1. NICHD NIH HHS [HD36512] Funding Source: Medline

Ask authors/readers for more resources

The biological significance of nuclear scaffold/matrix-attachment regions (S/MARs) remains a topic of long-standing interest. The key to understanding S/MAR behavior relies on determining the physical attributes of in vivo S/MARs and whether they serve as rigid or flexible chromatin loop anchors. To analyze S/MAR behavior, single and multiple copies of the S/MAR-containing constructs were introduced into various host genomes of transgenic mice and transfected cell lines. These in vivo integration events provided a system to study the association and integration patterns of each introduced S/MAR. By utilizing FISH to visualize directly the localization of S/MARs on the nuclear matrix or chromatin loop, we were able to assign specific attributes to the S/MAR. Surprisingly, when multiple-copy S/MARs were introduced they were selected and used as nuclear matrix anchors in a discriminatory manner, even though they all contained identical primary sequences. This selection process was probably mediated by S/MAR availability including binding strength and copy number, as reflected by the expression profiles and association of multi-copy tandem inserted constructs. Whereas S/MARs functioned as the mediators of loop attachment, they were used in a selective and dynamic fashion. Consequently, S/MAR anchors were necessary but not sufficient for chromatin loops to form. These observations reconcile many seemingly contradictory attributes previously associated with S/MARs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available