4.4 Article

Assessing forest metrics with a ground-based scanning lidar

Journal

CANADIAN JOURNAL OF FOREST RESEARCH
Volume 34, Issue 3, Pages 573-583

Publisher

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/X03-225

Keywords

-

Categories

Ask authors/readers for more resources

A ground-based scanning lidar (light detection and ranging) system was evaluated to assess its potential utility for tree-level forest mensuration data extraction. Ground-based-lidar and field-mensuration data were collected for two forest plots: one located within a red pine (Pinus resinosa Ait.) plantation and another in a mixed deciduous stand dominated by sugar maple (Acer saccharum Marsh.). Five lidar point cloud scans were collected from different vantage points for each plot over a 6-h period on 5 July 2002 using an Optech Inc. ILRIS-3D laser imager. Field- validation data were collected manually over several days during the same time period. Parameters that were measured in the field or derived from manual field measures included (i) stem location, (ii) tree height, (iii) stem diameter at breast height (DBH), (iv) stem density, and (v) timber volume. These measures were then compared with those derived from the ILRIS-3D data (i.e., the lidar point cloud data). It was found that all parameters could be measured or derived from the data collected by the ground-based lidar system. There was a slight systematic underestimation of mean tree height resulting from canopy shadow effects and suboptimal scan sampling distribution. Timber volume estimates for both plots were within 7% of manually derived estimates. Tree height and DBH parameters have the potential for objective measurement or derivation with little manual intervention. However, locating and counting trees within the lidar point cloud, particularly in the multitiered deciduous plot, required the assistance of field-validation data and some subjective interpretation. Overall, ground-based lidar demonstrates promise for objective and consistent forest metric assessment, but work is needed to refine and develop automatic feature identification and data extraction techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available