3.9 Article

Enhancement of glucocorticoid receptor-mediated gene expression by constitutively active heat shock factor 1

Journal

MOLECULAR ENDOCRINOLOGY
Volume 18, Issue 3, Pages 509-520

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1210/me.2003-0366

Keywords

-

Funding

  1. NIDDK NIH HHS [DK43867, R01 DK043867] Funding Source: Medline

Ask authors/readers for more resources

To further define the role of heat shock factor 1 (HSF1) in the stress potentiation of glucocorticoid receptor (GR) activity, we placed a constitutively active mutant of human HSF1 (hHSF1-E189) under the control of a doxycycline (DOX)-inducible vector. In mouse L929 cells, DOX-induced expression of hHSF1-E189 correlated with in vivo occupancy of the human heat shock protein 70 (hHsp70) promoter (chromatin-immunoprecipitation assay) and with increased activity under nonstress conditions at the hHsp70 promoter controlling expression of chloramphenicol acetyl transferase (CAT) (p2500CAT). Comparison of hHSF1-E189 against stress-activated, endogenous HSF1 for DNA-binding, p2500-CAT, and Hsp70 protein expression activities showed the mutant factor to have lower, but clearly detectable, activities as compared with wild-type factor. Thus, the hHSF1-E189 mutant is capable of replicating these key functions of endogenous HSF1, albeit at reduced levels. To assess the involvement of hHSF1-E189 in GR activity, DOX-induced expression of hHSF1-E189 was performed in L929 cells expressing the minimal pGRE(2)E1B-CAT reporter. hHSF1-E189 protein expression in these cells was maximal at 24 h of DOX and remained constant up to 72 h. hHSF1-E189 expressed under these conditions was found both in the cytosolic and nuclear compartments, in a state capable of binding DNA. More importantly, GR activity at the pGRE(2)E1B-CAT promoter was found to increase after DOX-induced expression of hHSF1-E189. The potentiation of GR by hHSF1-E189 occurred at saturating concentrations of hormone and was dependent on at least 48 h of hHSF1-E189 up-regulation, suggesting that time was needed for an HSF1-induced factor to accumulate to a threshold level. Initial efforts to characterize how hHSF1-E189 controls GR signaling showed that it does not occur through alterations of GR protein levels or changes in GR hormone binding capacity. In summary, our observations provide the first molecular evidence for the existence of HSF1-regulated genes that serve to elevate the response of steroid receptors under stress conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available