4.3 Article

Theoretical prediction of synthesis methods to create magnetic nanographite

Journal

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
Volume 73, Issue 3, Pages 656-663

Publisher

PHYSICAL SOC JAPAN
DOI: 10.1143/JPSJ.73.656

Keywords

nanographite; flatband ferromagnetism; molecular magnet

Ask authors/readers for more resources

We propose that to modify zigzag edges of nanographite structures by hydrogenation, fluorination or oxidation is a method to create magnetic materials made only from light elements. These reactions and methylene addition are compared with each other in several aspects by considering a graphene ribbon having mono-hydrogenated zigzag edges as a starting material. A local-spin-density approximation was applied to the electronic band-structure calculation of nanographite ribbon structures and stability of each ribbon was tested by the first-principles manner. Among possible reactions for graphene ribbon, hydrogenation produces the largest magnetic moment per a carbon atom. Since the hydrogenation is exothermic, however, fluorination has advantage, where the reaction is endothermic. The possible maximum moment is 1/3 of that for the ideal hydrogenationed graphene ribbon. A graphene ribbon with an oxidized zigzag edge and a monohydrogenated zigzag edge possesses a partially spin-polarized flat band similar to the fluorinated ribbon. A magnetic moment appears at the monohydrogenated zigzag edge but not at the oxidized edge. No evidence of spin polarization, however, has been found for a methylene-substituted graphene ribbon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available