4.3 Article

Missense mutations in transmembrane domains of proteins: Phenotypic propensity of polar residues for human disease

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 54, Issue 4, Pages 648-656

Publisher

WILEY
DOI: 10.1002/prot.10611

Keywords

helix; hydrophobic; bilayer; statistics; bioinformatics; database; folding

Ask authors/readers for more resources

Previous experiments on the cystic fibrosis transmembrane conductance regulator suggested that non-native polar residues within membrane domains can compromise protein structure/function. However, depending on context, replacement of a native residue by a non-native residue can result either in genetic disease or in benign effects (e.g., polymorphisms). Knowledge of missense mutations that frequently cause protein malfunction and subsequent disease can accordingly reveal information as to the impact of these residues in local protein environments. We exploited this concept by performing a statistical comparison of disease-causing mutations in protein membrane-spanning domains versus soluble domains. Using the Human Gene Mutation Database of 240 proteins (including 80 membrane proteins) associated with human disease, we compared the relative phenotypic propensity to cause disease of the 20 naturally occurring amino acids when removed from-or inserted into-native protein sequences. We found that in transmembrane domains (TMDs), mutations involving polar residues, and ionizable residues in particular (notably arginine), are more often associated with protein malfunction than soluble proteins. To further test the hypothesis that interhelical cross-links formed by membrane-embedded polar residues stabilize TMDs, we compared the occurrence of such residues in the TMDs of mesophilic and thermophilic prokaryotes. Results showed a significantly higher proportion of ionizable residues in thermophilic organisms, reinforcing the notion that membrane-embedded electrostatic interactions play critical roles in TMD stability. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available