4.4 Article

A computational model of the mechanics of growth of the villous trophoblast bilayer

Journal

BULLETIN OF MATHEMATICAL BIOLOGY
Volume 66, Issue 2, Pages 199-232

Publisher

SPRINGER
DOI: 10.1016/j.bulm.2003.06.001

Keywords

-

Ask authors/readers for more resources

We present a computational model of the mechanics of growth of the trophoblast bilayer in a chorionic villous, the basic structure of the placenta. The placental trophoblast is modeled as a collection of elastic neutrally buoyant membranes (mononuclear cytotrophoblasts and multinucleated syncytiotrophoblast) filled with a viscous, incompressible fluid (cytoplasm) with sources of growth located inside cells. We show how this complex, dynamic fluid-based structure can be modeled successfully using the immersed boundary method. The results of our research presented here include simulations of two processes-cell proliferation and cell fusion which both play a crucial role in the growth and development of the trophoblast tissue. We present the computed results of simulations of both processes running independently as well as simultaneously, along with comparisons with clinically obtained results. (C) 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available