4.1 Article

Interconnection between hydro and PIC codes for fast ignition simulations

Journal

LASER AND PARTICLE BEAMS
Volume 22, Issue 1, Pages 41-44

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0263034604221085

Keywords

fast ignition; hydro code; interconnection; PIC code; simulation

Ask authors/readers for more resources

Relativistic laser-plasma interaction, subsequent superhot electron transport, superhot electron energy deposition, and the overall implosion process are key subjects for fast ignition. All these phenomena couple with each other, and more studies by simulations are essential. We have a plan to simulate the whole of fast ignition self-consistently with four individual codes. Four codes are integrated into one big system in the Fast Ignition Integrated Interconnecting code project. In a first stage of this project, we integrate the Arbitrary Lagrangian Eulerian (ALE) hydro code with the collective particle in cell (PIC) code. The PIC code obtains density profile at maximum compression from the ALE hydro code to introduce imploded plasma into a PIC system, and we can simulate interaction between ignition laser and realistic plasma. We have evaluated reflected laser spectrum and electron energy distribution, and found many differences between the realistic plasma profile and the conventional one in PIC simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available