4.7 Article

Generation and classification of localized waves by Lorentz transformations in Fourier space

Journal

PHYSICAL REVIEW E
Volume 69, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.69.036612

Keywords

-

Ask authors/readers for more resources

The Lorentz transformations of propagation-invariant localized waves (also known as nondispersive or nondiffracting or undistorted progressive waves) are studied in the frequency-momentum space. For supports of wave functions in this space rules of transformation are derived which allow one to group all localized waves into distinct classes: subluminal, luminal, and superluminal localized waves. It is shown that for each class there is an inertial frame in which any given localized wave takes a particularly simple form. In other words, any localized wave is nothing but a relativistically aberrated and Doppler shifted version of a simple seed wave. Also discussed are the relations of the physical (subluminal) Lorentz tranformation to other mathematical tranformations used in the literature on localized waves, as well as physical interpretation of the substantial changes that localized waves undergo if observed and generated in different inertial frames.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available