4.4 Article

Investigation of protonatable residues in Rhodothermus marinus caa3 haem-copper oxygen reductase:: comparison with Paracoccus denitrificans aa3 haem-copper oxygen reductase

Journal

JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
Volume 9, Issue 2, Pages 124-134

Publisher

SPRINGER
DOI: 10.1007/s00775-003-0509-9

Keywords

continuum electrostatics; cytochrome c oxidase; molecular modelling; pK(a) calculations; proton channels

Ask authors/readers for more resources

The Rhodothermus marinus caa(3) haem-copper oxygen reductase contains all the residues of the so-called D- and K-proton channels, with the notable exception of the helix VI glutamate residue (Glu278(I) in Paracoccus denitrificans aa(3)), being nevertheless a true oxygen reductase reducing O-2 to water, and an efficient proton pump. Instead, in the same helix, but one turn below, it has a tyrosine residue (Tyr256(I), R. marinus caa(3) numbering), whose hydroxyl group occupies the same spatial position as the carboxylate group of Glu278(I), as deduced by comparative modelling techniques. Therefore, we proposed previously that this tyrosine residue could play an important role in the proton pathway. In this article we further study this hypothesis, by investigating the equilibrium thermodynamics of protonation in R. marinus caa(3), using theoretical methodologies based on the structural model previously obtained. Control calculations are also performed for the P. denitrificans aa(3) oxygen reductase. In both oxygen reductases we find several residues that are proton active (i.e., that display partial protonation) at physiological pH, some of them being redox sensitive (i.e., sensitive to the protein redox state). However, the caa(3) Tyr256(I) is not proton active at physiological pH, in contrast to the aa(3) Glu278(I) which is both proton active at physiological pH and shows a high redox sensitivity. In R. marinus caa(3) we do not find any other residues in the same protein zone that can have this property. Therefore, there are no putative D-channel residues that are proton active in this oxidase. The protonatable residues of the K-channel are much more functionally conserved in both oxygen reductases than the same type of residues in the D-channel. Two (Tyr262(I) and Lys336(I), caa(3) numbering) out of three protonatable K-channel residues are proton active and redox sensitive in both proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available