4.4 Article

Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 91, Issue 3, Pages 1282-1296

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.01125.2002

Keywords

-

Funding

  1. NIDCD NIH HHS [T32 DC000038-12, P01DC-00119, P01 DC000119-24, T32DC-00038-04] Funding Source: Medline

Ask authors/readers for more resources

Functional neuroimaging experiments have revealed an organization of frequency-dependent responses in human auditory cortex suggestive of multiple tonotopically organized areas. Numerous studies have sampled cortical responses to isolated narrow-band stimuli, revealing multiple locations in auditory cortex at which the position of response varies systematically with frequency content. Because appropriate anatomical or functional grouping of these distinct frequency-dependent responses is uncertain, the number and location of tonotopic mappings within human auditory cortex remains unclear. Further, sampling does not address whether the observed mappings exhibit continuity as a function of position. This functional magnetic resonance imaging study used frequency-swept stimuli to identify progressions of frequency sensitivity across the cortical surface. The center-frequency of narrow-band, amplitude-modulated noise was slowly swept between 125 and 8,000 Hz. The latency of response relative to sweep onset was determined for each cortical surface location. Because frequency varied systematically with time, response latency indicated the frequency to which a location was maximally sensitive. Areas of cortex exhibiting a progressive change in response latency with position were considered tonotopically organized. There exist two main findings. First, six progressions of frequency sensitivity (i.e., tonotopic mappings) were repeatably observed in the superior temporal plane. Second, the locations of the higher- and lower-frequency endpoints of these progressions were approximately congruent with regions reported to be most responsive to discrete higher- and lower-frequency stimuli. Based on these findings and previous anatomical work, we propose a correspondence between these progressions and anatomically defined cortical areas, suggesting that five areas in human auditory cortex exhibit at least six tonotopic organizations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available