4.7 Article

Phase transition and selection in a four-species cyclic predator-prey model -: art. no. 031911

Journal

PHYSICAL REVIEW E
Volume 69, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.69.031911

Keywords

-

Ask authors/readers for more resources

We study a four-species ecological system with cyclic dominance whose individuals are distributed on a square lattice. Randomly chosen individuals migrate to one of the neighboring sites if it is empty or invade this site if occupied by their prey. The cyclic dominance maintains the coexistence of all four species if the concentration of vacant sites is lower than a threshold value. Above the threshold, a symmetry breaking ordering occurs via growing domains containing only two neutral species inside. These two neutral species can protect each other from the external invaders (predators) and extend their common territory. According to our Monte Carlo simulations the observed phase transition seems to be equivalent to those found in spreading models with two equivalent absorbing states although the present model has continuous sets of absorbing states with different portions of the two neutral species. The selection mechanism yielding symmetric phases is related to the domain growth process with wide boundaries where the four species coexist.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available