4.6 Review

Assembly, stability and dynamics of virus capsids

Journal

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
Volume 531, Issue 1-2, Pages 65-79

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2012.10.015

Keywords

Virus; Capsid; Assembly; Oligomerization; Stability; Dynamics

Funding

  1. Spanish Government [BIO2009-10092, BIO2012-37649]
  2. Comunidad de Madrid (CM) [S-2009/MAT/1467]
  3. Fundacion Ramon Areces

Ask authors/readers for more resources

Most viruses use a hollow protein shell, the capsid, to enclose the viral genome. Virus capsids are large, symmetric oligomers made of many copies of one or a few types of protein subunits. Self-assembly of a viral capsid is a complex oligomerization process that proceeds along a pathway regulated by ordered interactions between the participating protein subunits, and that involves a series of (usually transient) assembly intermediates. Assembly of many virus capsids requires the assistance of scaffolding proteins or the viral nucleic acid, which interact with the capsid subunits to promote and direct the process. Once assembled, many capsids undergo a maturation reaction that involves covalent modification and/or conformational rearrangements, which may increase the stability of the particle. The final, mature capsid is a relatively robust protein complex able to protect the viral genome from physicochemical aggressions; however, it is also a metastable, dynamic structure poised to undergo controlled conformational transitions required to perform biologically critical functions during virus entry into cells, intracellular trafficking, and viral genome uncoating. This article provides an updated general overview on structural, biophysical and biochemical aspects of the assembly, stability and dynamics of virus capsids. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available