4.7 Article

Innovative iteration algorithm for a vehicle simulation program

Journal

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume 53, Issue 2, Pages 401-412

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2004.823534

Keywords

acceleration control; fuel optimal control; road vehicle propulsion; simulation software

Ask authors/readers for more resources

Resulting from Ph.D. research, a vehicle simulation program is proposed and continuously developed, which allows simulation of the behavior of electric, hybrid, fuel cell, and internal combustion vehicles while driving any reference cycle. The goal of the simulation program is to study power flows in the drivetrains of vehicles and the corresponding component losses, as well as to compare different drivetrain topologies. This comparison can be realized for energy consumption and emissions, as well as for performance (acceleration, range, maximum slope, etc.). The core of this program, consisting of a unique iteration algorithm, will be highlighted in this paper. This algorithm not only allows the calculation of the limits of vehicle acceleration in the function of drivetrain component characteristics, but at the same time is able to develop and evaluate the different power-management strategies of hybrid vehicles, combining combustion engines and electric motors. Furthermore, the comprehensive iteration algorithm is demonstrated to be very efficient in handling any type of working limit for all components in different types of drivetrains, which results in an accurate and modular vehicle simulation program with high data flexibility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available