4.5 Article

Acrodermatitis enteropathica mutations affect transport activity, localization and zinc-responsive trafficking of the mouse ZIP4 zinc transporter

Journal

HUMAN MOLECULAR GENETICS
Volume 13, Issue 5, Pages 563-571

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddh049

Keywords

-

Funding

  1. NIDDK NIH HHS [DK063975] Funding Source: Medline
  2. NIGMS NIH HHS [GM58265] Funding Source: Medline

Ask authors/readers for more resources

The Zip4 protein is involved in dietary zinc uptake from the intestinal lumen. The human ZIP4 gene (SLC39A4) was identified because of its association with acrodermatitis enteropathica (AE), a genetic disorder of zinc absorption. To date, several SLC39A4 mutations have been identified in AE patients. To investigate the effects of these mutations on function of the Zip4 transporter, we introduced six AE-associated missense mutations into the orthologous mouse ZIP4 gene for functional expression in cultured cells. All mutations decreased Zn-65 uptake activity of mZip4, thereby providing a causal link to AE. The mutants fell into two groups based on their phenotypic effects. Several alleles (G340D, L382P, G384R, G643R) failed to localize on the cell surface at high levels. These defects were attributable to misfolding and/or mislocalization in the secretory pathway. Two other alleles (P200L and G539R) accumulated to high levels in the plasma membrane and had wild-type apparent K-m values for Zn-65 uptake. However, these mutations decreased the V-max of uptake to similar to30% of wild-type. We showed previously that wild-type mZip4 is regulated post-translationally in response to zinc status. In zinc-replete cells, mZip4 is found largely in intracellular compartments. In zinc-limited cells, surface levels increase markedly because the rate of endocytosis decreases. Surprisingly, endocytosis of both P200L and G539R is no longer zinc responsive; these proteins are endocytosed at a slow rate regardless of zinc status. These effects suggest a zinc sensing mechanism for regulating Zip4 trafficking in response to zinc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available