4.5 Article

The inhibitory mechanism of YC-1, a benzyl indazole, on smooth muscle cell proliferation: an in vitro and in vivo study

Journal

JOURNAL OF PHARMACOLOGICAL SCIENCES
Volume 94, Issue 3, Pages 252-260

Publisher

JAPANESE PHARMACOLOGICAL SOC
DOI: 10.1254/jphs.94.252

Keywords

balloon injury; restenosis; YC-1; soluble guanylyl cyclase

Ask authors/readers for more resources

The pharmacological mechanisms of a synthetic compound 1-benzyl-3-(5'-hydroxymethyl-2'-furyl) indazole (YC-1) in preventing smooth muscle cell proliferation remains to be elucidated. The present study was aimed to explore the effects of YC-1 on certain molecules responsible for cell proliferation, including transforming growth factor (TGF)-beta1, soluble guanylyl cyclase (sGC) and focal adhesion kinase (FAK). The in vivo assay was correlated to the in vitro results of YC-1 on vascular stenosis. YC-1 was applied topically via a pluronic gel onto the balloon-injured rat carotid arteries, which were then harvested two weeks later for histological analysis. Our in vitro results showed that TGF-beta1 was suppressed by YC-1 by 50%. The translational level of sGC was threefold activated by YC-1 while the transcription level of sGC was increased up to 24-fold. FAK, the molecule responsible for cell proliferation and migration, was suppressed by YC-1 on the translational levels for 72%. These in vitro results were in consistent with the in vivo observation that the area ratio of neointima to media was reduced by YC-1. This study provides insights into the pharmacological mechanisms of YC-1 in preventing abnormal smooth muscle cell proliferation and thus supports the use of YC-1 as an adjuvant therapy for balloon injury-induced restenosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available