4.5 Article

In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (Sr-HA) bioactive cement

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 68A, Issue 3, Pages 513-521

Publisher

WILEY
DOI: 10.1002/jbm.a.20089

Keywords

bioactive bone cement; strontium-containing; hydroxyapatite; osteoconductive; bone formation; bone remodeling

Ask authors/readers for more resources

The purpose of this study was to investigate the in vivo bone response to the strontium-containing hydroxyapatite (Sr-HA) bioactive bone cement injected into the cancellous bone. Sr-HA cement was injected into the iliac crest of rabbits for 1, 3, and 6 months. Active bone formation and remodeling were observed after I month. Newly formed bone was observed to grow onto the bone cement after 3 months. Thick osteoid layer with osteoblasts formed along the bone and guided over the bone cement surface reflected the stimulating effect of Sr-HA. From scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis, high calcium and phosphorus levels were detected at the interface with a thick layer of 70 mum in width, and fusion of Sr-HA with the bone was observed. Blood vessels were found developing in remodeling sites. The affinity of bone on Sr-HA cement was increased from 73.55 +/- 3.50% after 3 months up to 85.15 +/- 2.74% after 6 months (p < 0.01). In contrast to Sr-HA cement, poly(methyl methacrylate) (PMMA) bone cement was neither osteoconductive nor bioresorbable. Results show that the Sr-HA cement is biocompatible and osteoconductive, which is suitable for use in treating osteoporotic vertebral fractures. (C) 2003 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available