4.7 Article

Particle swarm optimization versus genetic algorithms for phased array synthesis

Journal

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
Volume 52, Issue 3, Pages 771-779

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAP.2004.825102

Keywords

antenna pattern synthesis; antenna radiation pattern synthesis; genetic algorithms; optimization methods; phased arrays

Ask authors/readers for more resources

Particle swarm optimization is a recently invented high-performance optimizer that is very easy to understand and implement. It is similar in some ways to genetic algorithms or evolutionary algorithms, hut requires less computational bookkeeping and generally only a few lines of code. In this paper, a particle swarm optimizer is implemented and compared to a genetic algorithm for phased array synthesis of a far-field sidelobe notch, using amplitude-only, phase-only, and complex tapering. The results show that some optimization scenarios are better suited to one method versus the other (i.e., particle swarm optimization performs better in some cases while genetic algorithms perform better in others), which implies that the two methods traverse the problem hyperspace differently. The particle swarm optimizer shares the ability of the genetic algorithm to handle arbitrary nonlinear cost functions, but with a much simpler implementation it clearly demonstrates good possibilities for widespread use in electromagnetic optimization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available