4.5 Letter

Zinc selenide nanoribbons and nanowires

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 108, Issue 9, Pages 2784-2787

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp035595+

Keywords

-

Ask authors/readers for more resources

Zinc selenide nanoribbons and nanowires were obtained using laser ablation of ZnSe pressed powders. Their formation appeared to follow the vapor-solid and vapor-liquid-solid growth mechanisms, respectively. The product was characterized by means of scanning electron microscopy, transmission electron microscopy, micro-Raman scattering, and energy-dispersive X-ray spectroscopy. The ZnSe nanoribbons had a perfect wurtzite-2H single-crystal structure with a [120] growth direction and the {001} close-packed lattice planes of hexagonal ZnSe stacking along the nanoribbon width axis. The ZnSe nanowires grew with the {001} close-packed lattice planes of the wurtzite-2H structure stacking along the nanowire length axis. Both the longitudinal optic (LO) and transverse optic (TO) phonon peaks of the ZnSe nanowires and nanoribbons showed a clear shift toward low frequency relative to bulk values, probably because of small size and large surface effects. The ZnSe nanostructures exhibited strong self-activated luminescence centered at 596 rim.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available