4.8 Article

Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle

Journal

NATURE
Volume 428, Issue 6978, Pages 93-97

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02328

Keywords

-

Ask authors/readers for more resources

The movement of sister chromatids to opposite spindle poles during anaphase depends on the prior capture of sister kinetochores by microtubules with opposing orientations (amphitelic attachment or bi-orientation)(1). In addition to proteins necessary for the kinetochore-microtubule attachment, bi-orientation requires the Ipl1 (Aurora B in animal cells) protein kinase(2-7) and tethering of sister chromatids by cohesin(8,9). Syntelic attachments, in which sister kinetochores attach to microtubules with the same orientation, must be either 'avoided' or 'corrected'. Avoidance might be facilitated by the juxtaposition of sister kinetochores such that they face in opposite directions; kinetochore geometry is therefore deemed important. Error correction, by contrast, is thought to stem from the stabilization of kinetochore-spindle pole connections by tension in microtubules, kinetochores, or the surrounding chromatin arising from amphitelic but not syntelic attachment(10,11). The tension model predicts that any type of connection between two kinetochores suffices for efficient bi-orientation. Here we show that the two kinetochores of engineered, unreplicated dicentric chromosomes in Saccharomyces cerevisiae bi-orient efficiently, implying that sister kinetochore geometry is dispensable for bi-orientation. We also show that Ipl1 facilitates bi-orientation by promoting the turnover of kinetochore-spindle pole connections in a tension-dependent manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available