4.7 Article

Diverse redox-active molecules bearing identical thiol-terminated tripodal tethers for studies of molecular information storage

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 69, Issue 5, Pages 1461-1469

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo0349476

Keywords

-

Ask authors/readers for more resources

To examine the effects of molecular structure on charge storage in self-assembled monolayers (SAMs), a family of redox-active molecules has been prepared wherein each molecule bears a tether composed of a tripodal linker with three protected thiol groups for surface attachment. The redox-active molecules include ferrocene, zinc porphyrin, ferrocene-zinc porphyrin, magnesium phthalocyanine, and triple-decker lanthanide sandwich coordination compounds. The tripodal tether is based on a tris [4-(S-acetylthiomethyl)phenyl]-derivatized methane. Each redox-active unit is linked to the methane vertex by a 4,4'-diphenylethyne unit. The electrochemical characteristics of each compound were examined in solution and in SAMs on Au. Redox-kinetic measurements were also performed on the SAMs (with the exception of the magnesium phthalocyanine) to probe (1) the rate of electron transfer in the presence of an applied potential and (2) the rate of charge dissipation after the applied potential is disconnected. The electrochemical studies of the SAMs indicate that the tripodal tether provides a more robust anchor to the Au surface than does a tether with a single site of attachment. However, the electron-transfer and charge-dissipation characteristics of the two tethers are generally similar. These results suggest that the tripodal tether offers superior stability characteristics without sacrificing electrochemical performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available