4.6 Article

A RecA-LexA-dependent pathway mediates ciprofloxacin-induced fibronectin binding in Staphylococcus aureus

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 10, Pages 9064-9071

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M309836200

Keywords

-

Funding

  1. NIAID NIH HHS [AI23988, AI47441] Funding Source: Medline

Ask authors/readers for more resources

Subinhibitory concentrations of ciprofloxacin (CPX) raise the fibronectin-mediated attachment of fluoroquinolone-resistant Staphylococcus aureus by selectively inducing fnbB coding for one of two fibronectin-binding proteins: FnBPB. To identify candidate regulatory pathway(s) linking drug exposure to up-regulation of fnbB, we disrupted the global response regulators agr, sarA, and recA in the highly quinolone-resistant strain RA1. Whereas agr and sarA mutants of RA1 exposed to CPX still displayed increased adhesion to fibronectin, the CPX-triggered response was abolished in the uvs-568 recA mutant, but was restored following complementation with wild type recA. Steady-state levels of recA and fnbB, but not fnbA, mRNA were co-coordinately increased >3-fold in CPX-exposed strain RA1. Electrophoretic mobility shift assays revealed specific binding of purified S. aureus SOS-repressor LexA to recA and fnbB, but not to fnbA or rpoB promoters. DNase I footprint analysis showed LexA binding overlapping the core promoter elements in fnbB. We conclude that activation of recA and derepression of lexA-regulated genes by CPX may represent a response to drug-induced damage that results in a novel induction of a virulence factor leading to increased bacterial tissue adherence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available