4.3 Article

Effects of concentrate proportion in the diet with or without Fusarium toxin-contaminated triticale on ruminal fermentation and the structural diversity of rumen microbial communities in vitro

Journal

ARCHIVES OF ANIMAL NUTRITION
Volume 64, Issue 6, Pages 467-483

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/1745039X.2010.511515

Keywords

Fusarium; fermentation; in vitro; mycotoxin; microbiota; polymerase chain reaction; rumen simulation; triticale

Ask authors/readers for more resources

The objective of this study was to investigate the effects of the concentrate proportion and Fusarium toxin-contaminated triticale (FCT) in the diet on nutrient degradation, microbial protein synthesis and structure of the microbial community, utilising a rumen simulation technique and single-strand conformation polymorphism (SSCP) profiles based on PCR-amplified small subunit ribosomal RNA genes. Four diets containing 60% or 30% concentrates on a dry matter basis with or without FCT were incubated. The fermentation of nutrients and microbial protein synthesis was measured. On the last day of incubation, microbial mass was obtained from the vessel liquid, DNA was extracted and PCR-primers targeting archaea, fibrobacter, clostridia, bifidobacteria, bacillii, fungi, and bacteria were applied to separately study the individual taxonomic groups with SSCP. The concentrate proportion affected the fermentation and the microbial community, but not the efficiency of microbial protein synthesis. Neither the fermentation of organic matter nor the synthesis and composition of microbial protein was affected by FCT. The fermentation of detergent fibre fractions was lower in diets containing FCT compared to diets with uncontaminated triticale. Except for the clostridia group, none of the microbial groups were affected by presence of FCT. In conclusion, our results give no indication that the supplementation of FCT up to a deoxynivalenol concentration in the diet of 5mg per kg dry matter affects the fermentation of organic matter and microbial protein synthesis. These findings are independent of the concentrate level in the diets. A change in the microbial community composition of the genus Clostridia may be the reason for a reduction in the cellulolytic activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available