4.6 Article

On the superlinear increase in conductivity with dopant concentration in excitonic semiconductors

Journal

APPLIED PHYSICS LETTERS
Volume 84, Issue 10, Pages 1707-1709

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1668326

Keywords

-

Ask authors/readers for more resources

We show that the same factors that cause exciton formation in organic (excitonic) semiconductors, the low dielectric constant and the localized wave functions of the charge carriers, also control their doping processes. We compare doping in organic and inorganic semiconductors and show that the superlinear increase in conductivity with doping density should be a universal characteristic of excitonic semiconductors. The binding energy of the dopant electron to its conjugate cation in highly ordered perylene diimide films controls the free carrier density. The binding energy decreases with increasing dopant concentration because the neutral dopants increase the polarizability of the film. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available