4.8 Article

DNA damage induces downregulation of histone gene expression through the G1 checkpoint pathway

Journal

EMBO JOURNAL
Volume 23, Issue 5, Pages 1133-1143

Publisher

WILEY
DOI: 10.1038/sj.emboj.7600120

Keywords

checkpoints; cyclin E-Cdk2; DNA damage; histone gene expression; NPAT

Funding

  1. NIGMS NIH HHS [R01 GM065814] Funding Source: Medline

Ask authors/readers for more resources

Activation of the G(1) checkpoint following DNA damage leads to inhibition of cyclin E-Cdk2 and subsequent G(1) arrest in higher eucaryotes. Little, however, is known about the molecular events downstream of cyclin E-Cdk2 inhibition. Here we show that, in addition to the inhibition of DNA synthesis, ionizing radiation induces downregulation of histone mRNA levels in mammalian cells. This downregulation occurs at the level of transcription and requires functional p53 and p21(CIP1/WAF1) proteins. We demonstrate that DNA damage induced by ionizing radiation results in the suppression of phosphorylation of NPAT, an in vivo substrate of cyclin E-Cdk2 kinase and an essential regulator of histone gene transcription, and its dissociation from histone gene clusters in a p53/p21-dependent manner. Inhibition of Cdk2 activity by specific inhibitors in the absence of DNA damage similarly disperses NPAT from histone gene clusters and represses histone gene expression. Our results thus suggest that inhibition of Cdk2 activity following DNA damage results in the downregulation of histone gene transcription through dissociation of NPAT from histone gene clusters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available