4.7 Article

DNA polymerase θ is preferentially expressed in lymphoid tissues and upregulated in human cancers

Journal

INTERNATIONAL JOURNAL OF CANCER
Volume 109, Issue 1, Pages 9-16

Publisher

WILEY
DOI: 10.1002/ijc.11666

Keywords

genomic instability; gene recombination; tumorigenesis; clinical prognosis; immune system

Categories

Ask authors/readers for more resources

DNA polymerase theta (Pol theta) is a recently identified family A polymerase that contains an intrinsic helicase domain. Drosophila Pol theta mutants are hypersensitive to bifunctional DNA crosslinking agents and exhibit an elevated frequency of spontaneous chromosomal aberrations, suggesting a role for Poll theta in repair of DNA interstrand crosslinks and in the general maintenance of genome stability. To investigate a possible involvement of Pol theta in tumorigenesis, we have examined its expression in various normal and malignant tissues. Paired tumor and adjacent nontumorous tissues from patients with lung (n = 27), stomach (n = 28) and colon (n = 26) cancer, as well as 26 normal human tissues, were examined for Pol theta expression by RT-PCR, Northern or Western blot analysis. Poll theta was predominantly expressed in primary lymphoid organs including the fetal liver, thymus and bone marrow where lymphocyte progenitors undergo V(D)J rearrangements of their antigen receptor genes. In addition, Pol theta expression was upregulated in germinal center B cells, in which class switch recombination of the immunoglobulin genes occurs. Examination of Pol theta expression in matched cancer specimens revealed that Pol theta was barely detectable in the nontumorous tissues but was upregulated in 17 of 27 (63%) lung, 11 of 28 (39%) stomach and 20 of 26 (77%) colon cancers. Moreover, patients with high levels of Pol theta expression had a significantly poorer clinical outcome compared with those expressing low levels of Pol theta. These results implicate that Pol theta may have a specialized function in lymphocytes and that its overexpression may contribute to tumor progression. (C) 2003 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available