4.6 Article

The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 11, Pages 10747-10755

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M311646200

Keywords

-

Ask authors/readers for more resources

LMADS1, a lily ( Lilium longiflorum) AP3 orthologue, contains the complete consensus sequence of the paleoAP3 ( YGSHDLRLA) and PI-derived (YEFRVQPSQPNLH) motifs in the C-terminal region of the protein. Interestingly, through yeast two-hybrid analysis, LMADS1 was found to be capable of forming homodimers. These results indicated that LMADS1 represents an ancestral form of the B function protein, which retains the ability to form homodimers in regulating petal and stamen development in lily. To explore the involvement of the conserved motifs in the C-terminal region of LMADS1 in forming homodimers, truncated forms of LMADS1 were generated, and their ability to form homodimers was analyzed using yeast two-hybrid and electrophoretic mobility shift assay. The ability of LMADS1 to form homodimers decreased once the C-terminal paleoAP3 motif was deleted. When both paleoAP3 and PI-derived motifs were deleted, the ability of LMADS1 to form homodimers was completely abolished. This result indicated that although the paleoAP3 motif promotes the formation of LMADS1 homodimers, the PI-derived motif is essential. Deletion analysis indicated that two amino acids, RV, of the 5 final amino acids, YEFRV, in the PI-derived motif are essential for the formation of homodimers. Further, point mutation analysis indicated that amino acid Val was absolutely necessary, whereas residue Arg played a less important role in the formation of homodimers. Furthermore, Arabidopsis AP3 was able to form homodimers once its C-terminal region was replaced by that of LMADS1. This result indicated that the C-terminal region of LMADS1 is responsible and essential for homodimer formation of the ancestral form of the B function protein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available