4.8 Article

Phase separation close to the density-driven Mott transition in the Hubbard-Holstein model

Journal

PHYSICAL REVIEW LETTERS
Volume 92, Issue 10, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.92.106401

Keywords

-

Ask authors/readers for more resources

The density-driven Mott transition is studied by means of dynamical mean-field theory in the Hubbard-Holstein model, where the Hubbard term leading to the Mott transition is supplemented by an electron-phonon (e-ph) term. We show that an intermediate e-ph coupling leads to a first-order transition at T=0, which is accompanied by a phase separation between a metal and an insulator. The compressibility in the metallic phase is substantially enhanced. At quite larger values of the coupling, a polaronic phase emerges coexisting with a nonpolaronic metal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available