4.5 Article

Analysis of bending behavior of native and engineered auricular and costal cartilage

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 68A, Issue 4, Pages 597-602

Publisher

WILEY
DOI: 10.1002/jbm.a.10068

Keywords

auricular cartilage; tissue engineering; biomechanics; soft-tissue deformation; large-deflection bending

Ask authors/readers for more resources

A large-deflection elasticity model was used to describe the mechanical behavior of cartilaginous tissues during three-point bending tests. Force-deflection curves were measured for 20-mm long x 4-mm wide x approximate to1-mm thick strips of porcine auricular and costal cartilage. Using a least-squares method with elastic modulus in bending as the only adjustable parameter, data were fit to a model based on the von Karman theory for large deflection of plates. This model described the data well, with an average RMS error of 14.8% and an average R-2 value of 0.98. Using this method, the bending modulus of auricular cartilage (4.6 MPa) was found to be statistically lower (p < 0.05) than that of costal cartilage (7.1 MPa). Material features of the cartilage samples influenced the mechanical behavior, including the orientation of the perichondrium in auricular cartilage. These methods also were used to determine the elastic moduli of engineered cartilage samples produced by seeding chondrocytes into fibrin glue. The modulus of tissue-engineered constructs increased statistically with time (p < 0.05), but still were statistically lower than the moduli of the native tissue samples (p > 0.05), reaching only about a third of the values of native samples. (C) 2004 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available