4.8 Article

Prostate cancer cell adhesion to bone marrow endothelium: The role of prostate-specific antigen

Journal

CANCER RESEARCH
Volume 64, Issue 6, Pages 2083-2089

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-03-3487

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA 92931-01] Funding Source: Medline

Ask authors/readers for more resources

Bone metastasis is the most frequent complication of prostate cancer (PC). Elucidation of the biological basis of this specificity is required for the development of approaches for metastatic inhibition. We investigated the possibility that the preferential attachment of PC cells to bone marrow endothelium (as opposed to endothelium from other organs) affects this specificity. We selected, from peptide phage-displayed libraries, peptide ligands to surfaces of PC cells (C4-2B) attenuated (30-40%) binding of C4-2B cells to bone marrow endothelial cells (BMECs). We then determined the molecules on the surface of C4-2B cells interacted with the selected peptides using column affinity chromatography and a cDNA expression phage-displayed library generated from C4-2B cells in T7 phage. We identified a phage from the cDNA library that specifically bound to one of the selected peptides-L11. This phage displayed the amino acid sequence homologous for the COOH-terminal portion of prostate-specific antigen (PSA). To examine the possible direct involvement of PSA in the interactions between PC and BMECs, we performed a cell-cell adhesion assay. Antibodies to PSA attenuated PC cells adhesion to BMECs. In addition, exogenous proteolytically active PSA modulated this adhesion. Finally, inactivation of mRNA coding PSA by a small interfering RNA (siRNA) diminished C4-2B cell adhesion to BMECs. These results indicate that PSA expressed as secreted and surface-associated molecules in C4-2B cells is involved in cell-cell interactions and/or digests components of bone marrow endothelium for preferential adhesion and penetration of PC cells. The suggested experimental approach is a promising strategy for identification of cell surface molecules involved in intercellular interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available