4.6 Article

Study on long fiber-reinforced thermoplastic composites prepared by in situ solid-state polycondensation

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 91, Issue 6, Pages 3959-3965

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/app.13627

Keywords

in situ solid-state polycondensation (INSITU SSP); fibers; matrix; resins; adhesion

Ask authors/readers for more resources

Long glass fiber-reinforced thermoplastic composites were prepared by a new process, in situ solid-state polycondensation (INSITU SSP). In this process reinforcing continuous fibers were impregnated by the oligomer of PET melt, and then the impregnated continuous fibers were cut to a desired length (designated prepreg); finally, the prepreg was in situ polymerized in the solid state to form the high molecular weight matrix. SEM, FTIR spectra, short-beam shear stress test, flexural strength test, impact strength test, and the intrinsic viscosity measurement were used to investigate the wetting and interfacial adhesion, the mechanical properties of the composite, and the molecular weight of matrix resin in the composite. The results showed that the molecular weight of PET in the matrix resin and mechanical properties could be adjusted by controlling the SSP time and that the high level of interfacial adhesion between reinforcing fibers and matrix resin could be achieved by this novel INSITU SSP process, which are attributed to the good wetting of reinforcing fibers with low molecular weight oligomer melt as the impregnation fluid, the in situ formation of chemical grafting of oligomer chains onto the reinforcing fiber surface, and the in situ formation of the high molecular weight PET chains in the interphase regions. (C) 2004 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available