4.6 Article

Cross-talk between Cys34 and lysine residues in human serum albumin revealed by N-homocysteinylation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 12, Pages 10864-10871

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M313268200

Keywords

-

Ask authors/readers for more resources

Protein N-homocysteinylation involves a post-translational modification by homocysteine (Hcy)-thiolactone. In humans, about 70% of circulating Hcy is N-linked to blood proteins, mostly to hemoglobin and albumin. It was unclear what protein site(s) were prone to Hcy attachment and how N-linked Hcy affected protein function. Here we show that Lys(525) is a predominant site of N-homocysteinylation in human serum albumin in vitro and in vivo. We also show that the reactivity of albumin lysine residues, including Lys525, is affected by the status of Cys(34). The disulfide forms of circulating albumin, albumin-Cys(34)-S-S-Cys and albumin-Cys(34)-S-S-Hcy, are N-homocysteinylated faster than albumin-Cys(34)-SH. Although N-homocysteinylations of albumin-Cys(34)-SH and albumin-Cys(34)-S-S-Cys yield different primary products, subsequent thiol-disulfide exchange reactions result in the formation of a single product, N-(Hcy-S-S-Cys)-albumin-Cys(34)-SH. We also show that N-homocysteinylation affects the susceptibility of albumin to oxidation and proteolysis. The data suggest that a disulfide at Cys(34) of albumin promotes conversion of N-(Hcy-SH)-albumin-Cys(34)-SH to a proteolytically sensitive form N-(HcyS-S-Cys)-albumin-Cys(34)-SH, which would facilitate clearance of the N-homocysteinylated form of mercaptoalbumin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available