4.7 Article

Self-assembly of rod-coil block copolymers

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 120, Issue 12, Pages 5824-5838

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1649729

Keywords

-

Ask authors/readers for more resources

We present a self-consistent field theory model for the self-assembly behavior of rod-coil block copolymers. The orientational interactions between the rods were modeled through a Maier-Saupe interaction, while the enthalpic interactions between rods and coils were modeled through a standard Flory-Huggins approach. We outline a real-space numerical approach to solve the self-consistent field equations for such rod-coil block copolymers. A major focus of our work is upon the nonlamellar phases observed in the experiments on such polymers. To develop a physical understanding of these phases and their regimes of occurrence, we compute the two-dimensional phase diagram for our model. The latter shows significant departures from the one-dimensional phase diagram, but matches qualitatively with the existing experimental results. We also present scaling arguments that rationalize the numerical results for the self-assembly behavior. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available