4.4 Article Proceedings Paper

Printable anodes for flexible organic solar cell modules

Journal

THIN SOLID FILMS
Volume 451, Issue -, Pages 22-25

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2003.11.038

Keywords

organic solar cell; conjugated polymer; fullerene; screen-printing; Ag-grid; module

Ask authors/readers for more resources

The performance of organic bulk donor/acceptor heterojunction solar cells with different transparent electrodes is compared. Up to now, expensive material like indium-tinoxide (ITO) has been commonly used as a transparent electrode. Nevertheless, an interesting organic alternative in the form of highly conductive poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/ PSS) is emerging. In this work, a comparison is made between cells with either ITO or highly conductive PEDOT/PSS as a transparent contact. Different techniques such as spin-coating and screen-printing are used to deposit this latter material. Owing to still limited conductivity of PEDOT/PSS with respect to ITO, an underlying metallic grid is introduced. A standard photographic technique optimised here to result in a metallic Ag-pattern is used. In this way, a comparable performance of the photovoltaic devices with either type of anodes is obtained. This newly developed PEDOT/PSS-based transparent anode is successfully applied onto flexible substrates. Furthermore, appropriate design of the device structure makes it possible to realise serially connected solar cells. The performance of such devices is also reported. These results show that industrial production of fully flexible organic solar cell modules will be possible at low costs. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available