4.8 Article

Solid-phase ATRP synthesis of peptide-polymer hybrids

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 126, Issue 11, Pages 3472-3476

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja039583d

Keywords

-

Ask authors/readers for more resources

A versatile methodology to prepare hybrid biornaterials by atom transfer radical polymerization from resin-supported peptides has been established. As an example, we have synthesized a GRGDS-functionalized poly(2-hydroxyethyl methacrylate). The peptide-polymer was characterized by solid-state C-13 NMR and GPC and found to have a number average molecular weight of 4420 and a polydispersity of 1.47. These values are comparable to those obtained from solution-phase syntheses, suggesting the ATRP reaction is successful from a peptide-conjugated solid support. Solid-state C-13 NMR was used to characterize multiple steps in the reaction, and the synthesis was found to be near quantitative. We have performed cell adhesion experiments and observed the GRGDS sequence-promoted cell adhesion, whereas unfunctionalized poly(2-hydroxyethyl methacrylate) did not. By incorporating cell-signaling moieties in materials with defined molecular architecture, it will be possible to control the interactions between polymeric materials and biological systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available