4.8 Article

Activation of caspase-9 with irradiation inhibits invasion and angiogenesis in SNB19 human glioma cells

Journal

ONCOGENE
Volume 23, Issue 13, Pages 2339-2346

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1207406

Keywords

caspase 9; radiation; in version angiogenesis; glioma

Funding

  1. NCI NIH HHS [CA 85216, CA 95058, CA 75557, CA 92393] Funding Source: Medline
  2. NINDS NIH HHS [NS 47699] Funding Source: Medline

Ask authors/readers for more resources

Glioblastoma multiforme, the most common brain tumor, typically exhibits markedly increased angiogenesis, which is crucial for tumor growth and invasion. Antiangiogenic strategies based on disruption of the tumor microvasculature have proven effective for the treatment of experimental brain tumors. Here, we have overexpressed human caspase-9 by stable transfection in the SNB19 glioblastoma cell line, which normally expresses low levels of caspase-9. Our studies revealed that overexpression of caspase-9 coupled with radiation has a synergistic effect on the inhibition of glioma invasion as demonstrated by Matrigel assay (465%). Furthermore, sense caspase stable clones cocultured with fetal rat brain aggregates along with radiation showed complete inhibition as compared to the parental and vector controls. During in vitro angiogenesis, SNB19 cells cocultured with human microvascular endothelial cells (HMEC) showed vascular network formation after 48-72 h. In contrast, these capillary-like structures were inhibited when HMEC cells were cocultured with sense caspase stable SNB19 cells. This effect was further enhanced by radiation (5 Gy). Signaling mechanisms revealed that apoptosis is induced by cleavage of caspase-9 by radiation, loss of mitochondrial membrane potential and activation of caspase-3. These results demonstrate that activation of caspase-9 disrupts glioma cell invasion and angiogenesis in vitro. Hence, overexpression of proapoptotic molecules such as caspase-9 may be an important determinant of the therapeutic effect of radiation in cancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available