4.6 Article

InsP3R-associated cGMP kinase substrate (IRAG) is essential for nitric oxide-induced inhibition of calcium signaling in human colonic smooth muscle

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 13, Pages 12551-12559

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M313365200

Keywords

-

Ask authors/readers for more resources

Nitric oxide (NO)-mediated relaxation of colonic smooth muscle is crucial for the maintenance of human gut function. The molecular mechanisms of NO-dependent smooth muscle relaxation involve cyclic GMP-mediated inhibition of store-dependent calcium signaling. Recently, IRAG (inositol 1,4,5-trisphophate receptor-associated cGMP kinase substrate) has been characterized as a novel target molecule of cGMP-dependent protein kinase (cGKI) mediating NO-/cGMP-dependent inhibition of inositol 1,4,5-trisphosphate (InsP(3))-dependent calcium release in transfected COS cells. The aim of the present study was to characterize IRAG expression and its functional role in NO-dependent signaling in human colonic smooth muscle. Reverse transcriptase-PCR revealed IRAG mRNA expression in human colon, rectum, and cultured colonic smooth muscle cells. In cultured human colonic smooth muscle cells, bradykinin (BK) elicited InsP(3)-dependent calcium transients that were repeatable and independent of extracellular calcium. The NO donor sodium nitroprusside and the specific cGK activator 8-(4-chlorophenylthio) guanosine-3', 5'-cyclicmonophosphate (8-pCPT-cGMP) significantly inhibited BK-induced increase in intracellular calcium. Cells transfected with antisense oligonucleotides raised against IRAG (IRAG-AS) showed strongly decreased IRAG protein expression. In these cells, sodium nitroprusside and 8-pCPT-cGMP both failed to modulate BK-induced calcium transients. Thus, endogenous IRAG appears to be essentially involved in the NO/cGK-dependent inhibition of InsP(3)-dependent Ca2+-signaling in colonic smooth muscle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available