4.4 Article

Absence of large-scale displacement of quinone QB in bacterial photosynthetic reaction centers

Journal

BIOCHEMISTRY
Volume 43, Issue 12, Pages 3318-3326

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi049811w

Keywords

-

Ask authors/readers for more resources

Photosynthesis transforms light into chemical energy by coupling electron transfer to proton uptake at the quinone Q(B). The possibility of initiating this process with a brief pulse of light and the known X-ray structure makes the photosynthetic bacterial reaction center a paradigm for studying coupled electron-proton transfer in biology. It has been established that electron transfer from the primary quinone Q(A) to Q(B) is gated by a protein conformational change. On the basis of a dramatic difference in the location of Q(B) in structures derived from crystals cooled to 90 K either under illumination or in the dark, a functional model for the gating mechanism was proposed whereby neutral Q(B) moves 4.5 Angstrom before receiving the electron from Q(A)(-) [Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E., and Feher, G. (1997) Science 276, 812-816]. Isotope-edited FTIR difference spectroscopy of Q(B) photoreduction at 290 and 85 K is used to investigate whether Q(B) moves upon reduction. We show that the specific interactions of the carbonyl groups of Q(B) and Q(B)(-) with the protein at a single binding, site remain identical at both temperatures. Therefore, the different locations Of Q(B) reported in many X-ray crystal structures probably are unrelated to functional electron transfer from Q(A)(-) to Q(B).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available